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ABSTRACT 

The effect of some experimental parameters. namely sample weight. particle size and its distribution. 
heating rate and flow rate of inert gas. on the fractional decomposition of calcium carbonate samples have 
been studied both experimentally and theoretically. The gcncral conclusions obtainud from thcorctical 

analysis are corroborated qualitatively by the experimental data. The analysis indicates that the kinetic 
compensating effect may be partly due to the variations in cxpcrimental paramctcrs for different 

experiments. 

INTRODUCTION 

Thermogravimetric (TG) data are generally analysed using the integrated form of 
the rate equation 

dar/dt = k( 1 - a)” 0) 

where a is the fractional reaction or decomposition at time E, k is the reaction rate 
constant and tz is the order of reaction. In the case of non-isothermal studies with a 
constant rate of ter (erature rise, i.e., dT/dt = B, Coats and Redfern’s integrated 
form of the rate equation [l] 

is mostly used to evaluate the 
reaction. 

2RT -- e-E/RT 
E 1 (2) 

frequency factorA and activation energyiE of the 

Recently, Lahiri [2] has shown that for a sample having wide particle size 
distribution, the analysis of TG data by eqn. (2) may lead to erroneous conclusions 
regarding the values of E and A. The analysis ,was made for a hypothetical and ideal 
zero concentration of,product gas within the sample. 

In actual TG studies, the sample is normally present in the sample holder in the 
form of a loosely packed bed. So, generally, the concentration of the product gas 

. 
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“G” of the reaction 

S(s) = S’(s) + G(g) (3) 

may not be zero throughout the bed, even when experiments are conducted in 
vacuum or an inert atmosphere. In the present article, the effect of concentration 
gradient within the sample bed on the fractional decomposition has been analysed. 
This gradient is influenced by several experimental factors such as the flow rate of 
the gas. heating rates etc. 

Let us assume that Wg of sample having N size fractions is filled up to height L 

in the sample holder as shown in Fig. 1. Assuming that each particle in the sample 
decomposes according to reaction (3) in a topochemical fashion. the rate of decom- 
position of any particle can be expressed as 

where ‘;: is the instantaneous radius of unreacted core at time t. p is the difference in 
the density of the reactant solid S and that of the product solid S’, k’ is apparent 
reaction rate constant, Cc is the equilibrium concentration of the product gasG at 
the solid/gas interface and C is the actual concentration of the product gas G in the 
bulk phase around the particIe under consideration. The bulk concentration of G 
obviously changes with height. To evaluate the concentration of the product gas 
around any particle we first make the following simplifying assumptions. 

(i) There is no temperature gradient within the sample bed. 
(ii) The concentration of the product gas is a function of height. Z co-ordinate, 

only. That is, there is no radial gradient. 
(iii) The size distribution of particles and the porosity of the bed are constant 

throughout the sample bed. 

(iv) There is no accumulation of gas within the sample bed. For most of 
experimental conditions these assumptions should be reasonably valid. 

The mass balance equation for product gas in the bed can be expressed in terms 
of the flux (J) of G, and the rate of the generation of G per unit volume of bed, ri, 

as [31 

-(dJ/dZ)+ri=O (5) 

where 

J= -D=(dC/dZ) (6) 

and DC is the effective diffusivity of G in the bed. DC is related to the molecular 

Z=L 

SamHe 

.?=o 

Fig. 1. Sample holder. 
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diffusivity of the gas, DG by the relationship [3] 

D’ = (E/T)DG 

where E is the porosity of the sample bed and T is the tortuosity factor. 
0) 

With the progress of the reaction, finer particles will get completely reacted 
sooner. Therefore, the number of size fractions that will react at any instant of time 
will be N’< N. From eqn. (4) the rate of generation of G per unit bed volume 

where ni is the number of particles of ith size fraction per unit volume of the sample 
bed and ri is the radius of unreacted core. In eqn. (8), the value of N’ is determined 
by the condition 

r?J*+ I = 0; sv, >o 

The concentration C of the product gas in the bed can be expressed as 
(9) 

P 
C=RT (10) 
where P is the partial pressure of the product gas G at any height in the bed, R is gas 
constant and T is the temperature of the bed. From eqns. (S), (6), (8) and (10) 

D_ d’P N’ 

-- + x 4miri’k’( PC - P) = 0 
dZZ i=, 

where PC is the equilibrium pressure of the product gas. Again, from eqns. (4) and 
(lo), @ri/aT) can be expressed as 

ar. _-$&,L(pc -p) (12) 

where B = (dT/dt). is the rate of temperature rise of the sample. The boundary 
conditions are 

at T=O,ri=Ri 03) 
Z = 0, (dP/dZ) = 0 (14) 

Z=L,D’(dP/dZ)=K,(P-Pb) (15) 

where Ri is the radius of the ith size fraction particles, Ks is the mass transfer 
coefficient and Pb is the partial pressure of G outside the sample surface. Equation 
(14) implies that the bottom of the sample holder is impervious and eqn. (15) states 
that the amount of gas arriving at the sample surface is equal to the amount of the 
gas removed from the sample surface. The temperature dependence of k’ and Fe are 
given by 
k’ = A’ e-Q/R7 (16) 

PC = exp[ - (AH* - T AS*)/RT] (17) 

where A’ and Q are respectively the apparent frequency factor and activation energy 
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for reaction (3) and AH* and AS* are the standard enthalpy and entropy changes 
respectively of reaction (3). It is well known that over a limited temperature range, 
DG and hence D’ can be expressed as 

DC = &( T/T,)“’ (18) 

where m is a constant, and Do is the effective diffusivity at temperature To. 
Since the mass transfer coefficient is directly proportional to DG. K, can be 

expressed as 

KS = Kl(T/T,)“’ 09) 

where Ki is the mass transfer coefficient at To. 
From eqns. ( 16L( 19) and eqns. (1 I)-( 15) we obtain the following dimensionless 

equations 

-as’= e -(QtASII”)/‘RT 

a-r i- _” (21) 

at T= 0. xi = xp (22) 
j = 0. (Jy/ds”) = 0 (23) 

S= 1, (dj/d{)=Sh(l -(P”/P’)-y) (24) 

where the dimensionless height, {, dimensionless pressure, yI and the radius of the 
unreacted core of particles of ith size fraction xi are given by 

{=2/L (25) 

v=(P’ - P)/PC (26) 

xi = q/R, (27) 

the other dimensionless terms appearing in eqns. (20)-(24) are given by the follo\V- 
ing four equations 

D = (4mL*/D&z,R;A (28) 

b = A’ e’So/R/RBpR, (29) 

5% = KpOL/Do (30) 
,I; = Hi/“, (31) 

where tr, is the number of particles of largest radius, R,? per unit volume of the 
sample bed. The dimensionless term D, eqn. (28), is a measure of the ratio of 
diffusion resistance to resistance for the chemical reaction. Sh is the ratio of the 
diffusion resistance to mass transfer resistance. The term b defined by eqn. (29) can 
be considered as a dimensionless frequency factor for non-isothermal TG. 

The fractional decomposition per unit bed volume, fY at any value of 5 and the 
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total (or observed) decomposition, are.given by 

f=l-- 
i 
5 x;n;/ i f&p)’ 

i 
(32) 

i= 1 i= I 

tY = oifdl / (33) 

where x,! = R,/R,. The values of a andfcan be obtained from eqns. (20)-(24), (32), 

(33) and the dimensionless form of eqn. (9) i.e., 

x,v*+, = 0, x#?g > 0 (34) 

RESULTS AND DISCUSSION 

Results obtained front theory 

The eqns. (20)-(24) along with eqn. (34) were solved by the orthogonal colioca- 
tion method [4] (see appendix). All calculations were carried out using Q = 14 kcal g 
mole-‘, AH0 = 40.2 kcal g mole-‘. Pb = 0 and l?z = 1.6. Analysis of experimental 
data for calcium carbonate decomposition, reported later, by eqn. (2) leads to an 
average value for E of about 54 kcal g mole - I. Since E== AH0 + Q, and AHO for 
the decomposition of CaCO, is 40.2, Q was assumed to be 14 kcal g mole- ‘. Figure 2 
shows the concentration profile of the product gas in the sample bed. The concentra- 
tion of the product gas is maximum at < = 0 minimumy, and minimum at !: = 1. It is 
apparent that the concentration profile is strongly dependent on the value of D. 
Figure3 shows the variation of fractional decomposition, f, along the height of the 

8 
- cl=2r10e, b= lo”, N=l 
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Fig. 2. Composition profile of product gas along the height of the sample bed. 

Fig. 3. Profile of fractionaI decomposition aIong the height of the sa111p1c bed. 
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bed. Low fractional decomposition at {= 0, is due to the low value of the driving 
force of decomposition_v. Figure4 shows the effect of D, b and Sh on the total or 
observed fractiona decomposition. It is inter.esting to note that even when the 
fractional decomposition varies along the height of the sample bed, ln(g(a)/TZ} is 
approsimately Iineariy related to l/T. Furthermore the slopes of the lines are not 
very sensitive to the values of D. b and Sir. The activation energy calculated from the 
slopes of the curves in Fig. 4 vary between 44 and 55 kcal g mole - ‘. 

Figure4 shows that the overall reaction rate is strongly dependent on D and S~Z, 
when the value of D is large. However, the effect of both D and S/z become 
insignificant when the value of D is small. An approximate idea of the value of D 
where it will strongly influence the observed rate can be obtained as follows. 

Assuming Zp! ,($.Y~~) is independent of 5. the solution of eqn. (20) for the 
boundary conditions given by eqns. (23) and (24) is 

Sh( 1 -P/P’) 
_F = 

I/ sinh( 10 + S/t cosh( II) 
cosh( u{) 

When u g 1: eqn. (35) reduces to 

If S/I 5 u which is expected to be valid when u *: 1. eqn. (37) simplifies to 

(35) 

(36) 

(37) 

\‘= I- Pb/PC . . (38) 

In other words when IJC I. the composition of the product gas will be uniform 
throughout the bed. On the other hand. when 24 z+ S/z, eqn. (35) reduces to 

J==O (39) 

which indicates that the reaction rate will be practically zero. Thence, the composi- 
tion profile of the product gas and hence the observed rate of decomposition will be 
very sensitive to the diffusion resistance offered by the sample bed, D, when u is of 
the order of unity. Since u, eqn. (36), is strongly temperature dependent, u may be 
much less than unity at low temperatures but it may become quite significant at high 

temperatures. 
The preceding discussion shows that the concentration of the product gas within 

the sample bed will be the same as that above the bed only when the sampIe size is 
such that over the entire temperature range under investigation the value of u is 
much less than unity. Under this condition, for uniform particle size, the. activation 
energy calculated from the plot of In{g(a)/T2} vs. l/T leads to a correct value of 
the activation energy for the reaction. In Fig.4, for curve IV, z( c 1, and the 
activation energy obtained From the slope is 55 which compares well with the actual 
value used for calculation, 54.2( Q + AHO). 
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1 0=108, b=lO”, Sh=4 
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1 
T 
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Fig. 4. Effect of D. h. and S/I on the fractional decomposition for the uniform particle six. ,I’= I. 

As long as the condition 11 e 1 is satisfied over the temperature range under 
investigation, any change of D or S/t will not alter the fractional decomposition rate. 
On the other hand, if under the experimental conditions u is not very small, any 
change in the experimental condition will aher the rate of fractional decomposition. 

Figure 5 shows the effect of particle size distribution on the calculated fractional 
decomposition rate when the relative amount of various size fractions are the same 
and R,/R,_, = a. It is apparent that the slope of In{g(cu)/T’} vs. l/T plot is not 
very sensitive to the size distribution of particles when D is very large. On the other 

hand, when D is relatively small, wide size distribution may lead to significant 
non-linearity of the plot. Furthermore for the constant values of D, 6 and Sh, the 
reaction rate decreases with the increase in the number of size fractions in the 

sample. Figure 6 shows the plot of E vs. log( AR/B) calculated for the curves 
presented in Figs. 4 and 5. In spite of considerable scatter of the data points a linear 
relationship is apparent. This suggests that the kinetic compensating effect may be 
partly due to the variation of the experimental parameters. 

Experimental resulrs 

The effect of various experimental parameters on the fractional decomposition 
rate of a high grade commercial limestone (CaO 99.5%) was studied using a Stanton 
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Redcroft TG apparatus (model-770). All ex erlments were carried out in a flowing p _* 
stream of nitrogen. 

Experimental parameters were varied one at a time. The thermobalance gives 

continuous plots during weight loss runs. The figures shown subsequently show some 
actual data points. Figure7 shows the effect of sample weight on the decomposition 
rate. Increase in sample weight increases the height of the sample bed, L. Thereby 

both D and Sh increase, the increase in the former being much more than in the 
latter. Curves in Fig.4 indicate that this will lead to a decrease in the fractional 

reduction rate which is in agreement with Fig. 7. Figure 8 shows the effect of the 
addition of inert diluent Al,O, and the packing of the bed. For uniformly sized 
particles, the number of CaCO, particles per unit sample bed volume. 11, and height 

F 

PCRTICLE SIZE -16Ol.rtl50 )r 

HEATING RATE 20°C/ MIN 

I NITROGEN FLOW 6 ml/ MIN 

SAMPLE WEIGHT: 

0- 0 55.9 mg 

0 55.6 n 

A 31.6 ‘) 

p 21.4 ” 

6- 

SAMPLE WEIGHT 
INCREASING 

TEMPERATURE,‘K 

Fig. 7. Effect of sample weight on decomposition raie. 



Fig. X. Effect Of Al ?O, dilution 
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A DILUTED WITH A1203 
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900 1100 I200 

TEMPERATURE,OK 

and of compaction on decomposition 

of the sample bed can be expressed as 

1-c V 
fI=n, =- 

4 
-rRif 

v+v’ 

3 

L= v+v 
W --cl 

1300 

raw. 

w 

(41) 

where J’ and yl are the volumes of CaCO, and Al,O,, respectively, and S is the area 
of the base of the sample holder. Equations (40) and (41) suggest that the addition of 
inert diluent will reduce 11, and increase L but the product (n, L) will remain 
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unchanged. Thereby the addition of the inert diluent will increase D, eqn. (28), and 
Sk eqn. (30), by the same amount. Figure4 shows that when the observed fractional 
decomposition rate is sensitive to the value of D, the effect of an increase in D and 
Sh on *he fractional ‘decomposition rate are almost of the same order of magnitude 
but of opposite sign. Thereby the addition of A1,03 to the sample does not alter the 
fractional decomposition rate. On the other hand the packing of the bed reduces the 
porosity of the bed 4. Equations (40) and (41) suggest that the product (u,L) is 
independent of porosity but L decreases with a decrease in porosity. Since effective 

ciiffusivity, De, eqn. (7), is directly proportional to E, it can be shown that 

Do= (1 _E)/E (42) 

Thereby dense packing of the bed will increase D and reduce Sh resulting in a 
decrease in the fractional decomposition rate. 

PARTICLE SIZE -45 jlm 

HEATING RATE 20%/ #IN 

SAMPLE WEIGHT 

GAS FLOW RATE: 

0 Oml/MlN 

e 6 JJ FLOW RATE 

A IS JJ DECREASING 

~1100 

TCMPERiTUREfK 

Fig. 9. Effect of gas flow rate on decomposition rate. 
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900 1000 1100 I200 

TEMPERATURE :K 

Fig. 10. Effect of particle size and heating rate on decomposition rate. 

The effect of gas flow rate is shown in Fig. 9. increase in gas flow rate increases 
the mass transfer coefficient K, and hence Sh, resulting in an increase in the 
decomposition rate. 

Figure 10 shows the effect of particle size and heating rate when these parameters 
are varied individually. Increase in the heating rate decreases the value of 6, eqn. 
(29). and hence decreases the decomposition rate. Equation (40) shows. that for 
uniformly sized particles tr,Rf - IS inversely proportional to R,. So a reduction in 
particle size will increase both D and b by the same factor. Figure4 shows that the, 
fractional decomposition rate is more sensitive to b, hence a decrease in particle size 
results in an increase in the decomposition rate. 

Figure 11 shows the effect of particle size distribution on the fractional decom- 
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SAMPLE SIZE-33 mg 

HEATING RATE 20°C/ MIN 

GAS FLOW RATE 6ml/HIN 

SIZE FRACTIONS CEQUAL PARTS) 

0 -180 +150 km 

-150 +105 ms 

cl’ -180 Cl50 JJ.m 

-150 + 105 a’ 
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@ -160 +I50 pm 

-150 + IO5 
FINER SIZE 

>s 
FRACTIONS INCREASIW 

--105+ 89 s* 

--89+53 8) 

-45 )a 

TEMPERATURE ,OK 

Fig. 1 I. Effect of particle size distribution on decomposition rate. 

position rate. These experiments were carried out using almost the same total weight 
of the sample in each case and mixing equal proportions of various size fractions. 
The average size of the largest particles was the same (- 180 pm + 150 pm) for all 
the experiments. It can be shown that, for the above mentioned condition, the 
number of largest particles n, and hence D are inversely proportional to the number 
of size fractions in the sample, N. Curves I and IV in Fig. 5 indicate that the net 
effect of the increase in the number of size fractions in the sample is a slight increase 

in the fractional decomposition rate. This is in agreement with the experimental data 
shown in Fig. 11. 

The values of ln(g(a)/T’} for the data points shown in Figs. 7-l 1 yield linear 
plots when plotted against l/T. 

Figure 12 shows the plot of .E vs. log AR/B obtained from the experimental data. 
A linear relationship is apparent from the figure. Both Figs. 6 and 12 indicate that 
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Fig. I?. Kinetic compensating cffcct. 

the kinetic compensatin g effect may be partly due to the variation in experimental 
parameters for different experiments. 
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APPENDIX 

Orthogonal collocation method 

To solve eqns. (20)-(24), it was assumed that y can be represented by 

t 
y = A cosh( &S) + 2 a$’ 

.j=O 
(Al) 

where 
l/2 

(A21 
f=O 

A. “is are unknown functions of T and I is the maximum order of the polynomial. 
The boundary condition eqn. (23) suggests a, must be zero. Substituting eqn. (Al) in 
eqns. (20). (24) and (21) 

(p-p,‘),4 cosh(&J) +/3a, + f: ai( -j( j- l)S.i-’ +pS’) =O 
,j=r 

(A31 

A{fl,sinhfl, +Sltcosh/3,} -I-Sha, + i $(i+Sh)=Sjz 
(1 -P”) 

j=z 
pc 

where 

(A41 

(A% 

and 

- axi _ h e -(Q+AU”)/RT 

ar- T 
A cosh( fio3) + i a$j (W 

j=2 

For an I th order polynomial a,, a2.. . a, were evaluated by satisfying eqn. (A3) at 
the roots of an Ith order Legendre polynomial [4]. The eqns. (A3)-(A6) were solved 
simultaneously along with the initial condition eqn. (22). In all cases the required 
degree of accuracy, difference between the calculated values of fractional decomposi- 
tion for two successive degrees of polynomial less than 0.155, could be obtained for 
iG6. 


